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Abstract—The screen content images (SCIs) quality influences
the user experience and interactive performance of remote
computing systems. With numerous approaches proposed to
evaluate the quality of natural images, much less work has been
dedicated to reduced-reference image quality assessment (RR-
IQA) of SCIs. Here we propose a RR-IQA method from the
perspective of SCI visual perception. In particular, the quality of
the distorted SCI is evaluated by comparing a set of extracted
statistical features that take both primary visual information and
unpredictable uncertainty into consideration. A unique property
that differentiates the proposed method from previous RR-IQA
methods for natural images is the consideration of behaviors
when human subjects view the screen content, which motivates
us to establish the perceptual model according to the distinct
properties of SCIs. Validations based on the screen content IQA
database show that the proposed algorithm provides accurate
predictions across a wide range of SCI distortions with negligible
transmission overhead.

Index Terms—Reduced-reference, screen content images, im-
age quality assessment

I. INTRODUCTION

RECENTLY, the popularity of screen virtualization has
been creating an ever stronger demand for efficient

screen content image (SCI) compression and quality assess-
ment methods. In a variety of remote processing and virtual
desktop application scenarios, the refreshed screen is rendered,
compressed and transmitted to the client side [1]–[3]. The
screen virtualization can be achieved by user interaction with
the local display interface, which is a mixture of natural
image regions and textual content generated by computers. In
these applications, objective image quality assessment (IQA)
methods that are capable of accessing the perceived quality
of SCIs are highly desired, as they can not only be used
to monitor the screen quality of remote computing systems,
but also provide a feasible way in devising and optimizing
advanced image/video processing algorithms [4]–[6].

IQA models that are capable of automatically predicting
the perceived quality of natural images have long enjoyed
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popularity for decades. Most of existing IQA methods require
the full reference (FR) information, and popular FR methods
include the structural similarity (SSIM) index [7], feature-
similarity (FSIM) [8], gradient similarity (GSIM) [9], visual
information fidelity (VIF) [10] and visual saliency induced
index (VSI) [11]. However, SCIs exhibit quite different charac-
teristics when compared with natural images. For instance, the
computer generated SCIs are usually noise free and composed
of thin edges with a limited number of colors. By contrast,
natural images are composed of continuous-tone structures
[12]. Another interesting observation is that the semantic
information in SCI is mainly interpreted relying on the eye
movements in the textual content. However, for natural images
the human visual system (HVS) is exquisitely adapted to
extract the conceptual information from visual input with
every new eye fixation [13]–[17]. These distinctive features of
SCIs motivate us to carry out a further investigation on their
perceptual characteristics which are essential in developing
trusted SCI IQA models.

In view of the importance of SCI quality assessment, in [18]
a database of distorted SCIs with subjective quality rankings
has been created, which includes seven common distortion
types. It contains 980 distorted SCIs generated by corrupting
20 source SCIs in various scenarios. The results demonstrate
that there is still a lack of accurate SCI quality assessment
methods. This further inspires FR-IQA models that predict
the SCI quality based on novel weighting strategies [18]–[20].

However, in typical remote computing systems, the refer-
ence image is not available at the client side. Thus, developing
IQA algorithms that only require significantly less information
of the original image is necessary and meaningful for appli-
cations in real scenarios. Traditionally, these algorithms can
be categorized into reduced-reference (RR) and no-reference
(NR) methods. Typically, NR algorithms are usually developed
with the assumption of the distortion process [21]–[23]. Due to
the absence of the information from the reference image, NR-
IQA methods are usually less efficient in providing accurate
predictions of the subjective quality. Fortunately, the RR-
IQA achieves a good compromise between the FR and NR
algorithms by comparing a few features [24]. Basically, the
extracted features from the reference image are transmitted to
the client side. In the literature, various RR-IQA models have
been proposed. In [25], the RR-IQA was developed with a
Wavelet domain natural image statistic model (WNISM). This
idea was further extended to devise the divisive normaliza-
tion domain RR-IQA [26] (DNT-RR) and SSIM based RR-
IQA [27] algorithms. In [28], the RR entropic differencing
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(RRED) based IQA method was presented. In [29], the visual
information fidelity based RR-IQA (VIF-RR) method was
proposed, which employs the auto-regression model to extract
the features that summarize the perceptual information. By
analyses of the distributions of DCT coefficients, Ma et al.
reorganized the DCT coefficients and predicted the perceptual
quality relying on their city-block distance (ROCB) [30], [31].
In [32], a Fourier transform domain (FTD) reduced-reference
method was proposed based on the phase and magnitude
information. In [33], the structural degradation model (SDM)
was developed, where the image quality score was obtained
based on the the structural information divergence between
the original and distorted images. However, most of these
algorithms are still designed based on natural images, making
them difficult to be straightforwardly applied in SCIs.

In order to develop an efficient RR-IQA method for SCIs,
there are several challenges that need to be considered. First,
the selected RR features should capture the perceptual prop-
erties of SCIs and be closely relevant with image distortions,
such that the perceptual quality degradation can be clearly
reflected by comparing these features directly. Second, the
extracted features should consume as few bits as possible.
Otherwise, they may impose a heavy burden to the SCI
transmission. Third, the computational complexity of the RR
feature calculation and comparison should be relatively low,
which makes it practical for real-time screen quality monitor-
ing.

Recent studies on human visual perception, including the
free-energy principle [34] and the Bayesian brain theory
[35], reveal that HVS actively infers the input scenes with
the internal generative mechanism (IGM). Specifically, the
brain acts as an active inference system to understand the
primary visual information [29], [36]. Here the primary visual
information can be regarded as the features that account for
the high level tasks of HVS for scene understanding and
recognition. However, due to the hypothesis that IGM model
could not be universal [34], there exists a gap between the
real scene and the prediction model from the brain. Such a
gap may cause “surprise” of the human subjects, and finally
lead to the unpredictable uncertainty. In other words, the
uncertainty indicates the information contained in the input
image that cannot be explained by HVS. As such, the amount
of uncertainty can be quantified by comparing the input with
the orderly signals that are from the inference procedure of
the brain.

Based on the IGM based brain theory, it is reasonable to
hypothesize that the image quality is closely relevant to the
primary visual information and the amount of uncertainty [37].
Inspired by the SCI FR-IQA method proposed in [19], we
develop a novel RR-IQA model by formulating the quality
of SCI in terms of these two components. Specifically, the
perception of SCI is modeled in a unique way by assuming
the HVS perception channel with both Gaussian blur and
motion blur to extract the orderly signals of SCIs. As such,
the amount of uncertainty can be quantified by the similarity
between the input and orderly signals. In particular, lower
similarity corresponds to larger amount of uncertainty and vice
versa. Consequently, the SCI quality is evaluated by comparing

the gradient-domain features that represent the primary visual
information and the similarities that evaluate the unpredictable
uncertainty. Experimental results demonstrate that the RR-IQA
method is capable of delivering highly competitive prediction
accuracy with relatively low overhead bits and computational
cost.

II. CHARACTERISTICS OF SCIS

It is widely acknowledged that the main functionality of
SCIs is to express the rich and meaningful information with
the textual content. Therefore, before the introduction of the
proposed algorithm, it is useful to discuss some interesting
properties of SCIs, which are meaningful in the development
of efficient IQA method.

To begin with, we study the characteristics of SCIs from the
perspective of edge profile representation. To investigate the
edge representation in textual content, we adopt the parametric
model [38]–[40], which promotes us to adaptively decompose
any edge profile and examine their properties in terms of
contrast and structure, respectively. Specifically, in the one-
dimensional domain, a step edge x0 can be represented by a
unit step function

u(x; b, l, x0) = l · U(x− x0) + b, (1)

where U(·) is the step function, b is the edge basis and l
denotes the edge contrast. The actual edge composition in SCIs
can be treated as a smooth transition of the unit edge, and this
can be achieved by convolving the step edge u(x; b, l, x0) with
Gaussian filter,

s(x; b, l, w, x0) = b+
l

2

(
1 + erf

(
x− x0
w
√

2

))
. (2)

Here erf(·) is the error function and w represents the edge
width. Such locally-adaptive representation is able to explic-
itly decompose any new edge profile into three physically
meaningful components. Specifically, the parameter b specifies
the base intensity of an edge. The parameter l represents the
strength of the edge, and higher l value indicates a stronger
edge. The edge structure is determined by w, and smaller
w corresponds to sharper edge profile. The parameters are
calculated by fitting (2) with local pixel values.

In Fig. 1, we demonstrate a typical SCI, together with
its local edge contrast and structure maps. We can observe
that the textual edges have higher contrast but thinner width
compared to the natural content. It suggests us to study the
quality of SCI by computing the gradient information, which
simultaneously captures the edge contrast and structure around
the edge regions. As such, the distortions that are sensitive to
HVS in the textual content can be efficiently detected.

Subsequently, the distinct viewing behaviors of SCIs are
briefly reviewed. Regarding the studies on the viewing be-
haviors of SCIs, Faraday’s visual scanning model [17] for
webpage images firstly explored how the visual information
is organized in a typical webpage. Specifically, the viewing
process is divided into two phases, including “searching”
and “scanning”. The “searching” phase takes place when the
viewer attempts to identify a salient point in the image, and
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(a) (b) (c)

Fig. 1. Analyses of edge contrast and width map based on (2) [41]. (a) SCI; (b) Edge contrast map; (c) Edge width map.

Fig. 2. General framework of an SCI RR-IQA system.

once the saliency point is detected, the “scanning” phase is
subsequently applied to extract the information. Based on this
strategy, in [42] the authors proposed a three-stage EHS (Ex-
pected Location, Heuristic Search, Systematic Search) theory
to further explain the “search” procedure in typical webpages.
Recently, in [16] a webpage saliency database was created, and
it is also observed that the textual regions in SCIs contain rich
information and salient stimuli. These studies reveal that SCIs
have their own characteristics that make the viewing behaviors
of them distinct from those of natural images.

III. REDUCED-REFERENCE SCI QUALITY ASSESSMENT

The idea of RR-IQA was firstly introduced in [43] as
a pragmatic approach to monitor the real-time image/video
quality over multimedia communication networks. We extend
this philosophy to the interactive screen remoting system, as
depicted in Fig. 2. Specifically, the server (sender side) and
the client (receiver side) communicate with each other over
a network through an interactive screen-remoting mechanism
[1]. After receiving the client input, the servers render the new
screen content and send the SCIs to the clients as a response.
At the receiver side, the screen update model refreshes the
display image with the received SCIs. Meanwhile, the features
extracted from the sender side are transmitted and compared
with that from the receiver side, such that the perceptual
degradations in the interactive screen-remoting systems can
be feasibly monitored. In particular, a feature extractor is
applied to the captured SCI signal at the sender side. The
extracted features are then transmitted to the receiver side
through an error-free ancillary channel. Typically, the data rate

in transmitting features as the side information is much lower
than that of the SCI transmission channel. When the clients
receive the distorted SCI via the error-prone channel, identical
feature extraction process resembles that at the sender side.
Finally, the divergence between the features that are extracted
from the SCIs of the sender and receiver sides is employed to
evaluate the image quality. As a result, the perceptual quality
can be accurately predicted by the feature comparison. It is
also worth mentioning that the RR-IQA methods for SCIs
are meaningful as the generated screen content at the server
side is usually noise-free. As such, the features extracted at
the sender side can be regarded as the faithful source of the
original SCI information. By contrast, the natural images are
usually captured by physical sensors, which may inevitably
introduce artifacts in the capturing process.

Given the distinct viewing behaviors of SCIs, it is worth
mentioning that both statistics of natural images and properties
of unnatural SCIs should be taken into consideration in the
design of the proposed IQA model. The reason is that SCIs that
serve as the input signals are eventually perceived by HVS.
Moreover, it is widely believed that the natural environment is
driving the function of HVS in the evolution process. There-
fore, the natural scene statistics can be taken into consideration
to account for the properties of HVS, and the properties of
unnatural SCIs should be taken into considerations to model
the input SCI signal.

The proposed RR-IQA approach is essentially based on the
IGM which assumes that perceptual quality relies on both the
primary visual information and the uncertainty that cannot
be explained by the HVS. Generally speaking, the primary
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 3. Illustration of the GM and significance maps, where the top row shows the SCIs, the middle row shows the corresponding GM maps, and the bottom
row shows the corresponding significance maps. (a)(f)(k) Original; (b)(g)(l) Gaussian noise; (c)(h)(m) Gaussian blur; (d)(i)(n) JPEG compression; (e)(j)(o)
JPEG2000 compression.

visual information accounts for the high level vision tasks such
as image understanding and recognition [37]. Therefore, the
distortions on the primary visual information may disturb the
extraction of the information content, leading to the difficulty
in image understanding. On the contrary, distortions on the
uncertainty may cause uncomfortable viewing experience [29],
[44]. The combination of primary visual information and the
uncertainty leads to the final visual quality. Without loss of
generality, in the following description we detail the feature
extraction process for the original image X, and identical
operations are also valid for the distorted image Y.

Based upon our analyses, the textual content contains abun-
dant high contrast edges, motivating us to study the quality of
SCIs in gradient domain. The gradient domain representation
was found to be an effective mechanism to account for the
behaviors of HVS [8], [9], [19]. Moreover, many high level
vision tasks such as object recognition and visual cognition
have also benefited a lot from the gradient information [45],
[46], which coincide with the main functionality of the pri-
mary visual information in IGM. Therefore, we employ the
gradient magnitude (GM) to characterize the primary visual
information,

G(X) =
√

g2x(X) + g2
y(X), (3)

where

gx(X) = hx ⊗ X =
1

16

 +3 0 −3
+10 0 −10
+3 0 −3

⊗ X, (4)

gy(X) = hy ⊗ X =
1

16

 +3 +10 −3
0 0 0

+3 −10 −3

⊗ X. (5)

Here hx and hy denote the “Scharr” convolution masks that
extract the gradient information from the image [47]. The
GM maps for the original and distorted SCIs are shown in
Fig. 3 (f)∼(j), which confirm that the GM information is
capable of capturing the information loss caused by various
types of distortions, such as Gaussian noise, Gaussian blur,
JPEG and JPEG2000 compression.

To incorporate the GM information in the RR-IQA algo-
rithm, we further distinguish the significant and insignificant
GMs by passing it through a non-linear mapping. The design
philosophy is that the significant GM corresponds to 1 and
insignificant GM corresponds to 0. In this manner, the non-
linear mapping of the GM into the same dynamic range will
largely facilitate the subsequent feature comparison process,
such that the RR-IQA can be achieved in an efficient way by
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only comparing the significant and insignificant feature values.
In general, the psychometric function with the sigmoid shape
[48], [49] can be adopted to achieve such functionality. In this
work, we employ the Galton’s ogive [50] which takes the form
of a cumulative normal distribution function (CDF),

c(s) =
1√
2πθ

∫ s

−∞
exp

[
− (t− τ)2

2θ2

]
dt, (6)

where c(s) denotes the detection probability density that
distinguishes the significant and insignificant GMs. The input
τ is the modulation threshold, s is the stimulus amplitude,
and θ is the parameter that controls the slope of detection
probability variation. In practical, θ is set as a constant value
0.05. Assuming the maximum gradient across the entire image
to be

gmax = max{G(X)}, (7)

and then τ is set as ρ · gmax to adapt the characteristics of the
input SCI. Here ρ is chosen as 0.1 in practice.

Such a method has been widely adopted in the design of
comparing two signals with different signal strengths [51].
After passing the GM through CDF, the significance map of
the input SCI can be generated, which expresses useful in-
formation regarding the local primary information distribution
across space. The significance map for the GM of the image X
is denoted as CG(X). In Fig. 3 (k)∼(o) the local significance
maps are shown, and scrupulous observers may find that
distortions can be detected when comparing the significance
maps of the reference and distorted SCIs.

The uncertainty information is obtained by comparing the
input with the orderly signals that are generated from the
inference procedure of the brain. In absence of any particular
distortions, it is typically assumed that the input visual signal
passes through the HVS channel before entering the brain. In
the image perceiving process, the lens acts as a strong low-
pass filter and high frequency information may get lost [52].
In [53], the authors also demonstrated the strong low pass
filtering effect of the human eye using the power spectra. This
inspires us to model the human visual perception process with
low-pass filter. In particular, considering the characteristics
of the HVS and SCIs, both Gaussian and motion low-pass
filters are applied to quantify the uncertainty information [19].
The reasons of adopting the combination of such filters are
manifold. First, the Gaussian filter is capable of achieving
high contrast edge smoothing, and distortions around high
contrast edges can be effectively reflected by comparing the
input and Gaussian filtered SCIs [54]. Second, the motion blur
is introduced to account for the viewing behavior of textual
content, which relies on scanning in terms of eye movements
to understand the information. Third, the combination of the
uncertainty from Gaussian and motion blur channels charac-
terizes how much uncertainty information will be generated
during the phases of eye “fixation” and “saccade” [14], [15],
[36].

Assuming the circular-symmetric Gaussian filter kernel to
be

hg(i, j) =
1

2πσ2
exp

(
− i

2 + j2

2σ2

)
, (8)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Illustration of the uncertainty maps from Gaussian blur and
motion blur, where the top row shows the SCIs, the middle row shows the
corresponding SG maps, and the bottom row shows the corresponding SM

maps. (a)(d)(g) Original; (b)(e)(h) Gaussian noise; (c)(f)(i) Gaussian blur.

the Gaussian smoothed image is produced by convoluting it
with the input image X,

Xs = X⊗ hg. (9)

As such, the uncertainty information is computed by evalu-
ating the similarity between X and Xs. Here we adopt the
normalized version of gradient similarity [9], which holds
the properties such as symmetry, boundedness and unique
maximum,

SG(X) = f(X,Xs) =
(G(X)− G(Xs))

2

G2(X) + G2(Xs)
. (10)

In general, SG shall preserve the structure of the input SCI,
such that distortions in the further comparison process can
be well reflected. This requires the smoothing strength to be
neither extremely strong (e.g., σ > 10) nor extremely weak
(e.g., σ < 1). In Fig. 5, we demonstrate the distorted SCIs and
their corresponding SG maps using σ = 1.0, 5.5, 11. One can
discern that the SG map with σ = 1.0 cannot well preserve
the original textual structure, and the SG map with σ = 11
may magnify the distortions. In this regard, here the standard
deviation σ is set to be 5.5 and the parameter sensitivities
to the final quality prediction performance are evaluated in
Section IV.

In analogy to the Gaussian blur, the motion blurred image
Xm is generated by applying the motion blur convolution ker-
nel m to the image X. Specifically, the motion blur convolution
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Illustration of SG maps generated by comparing the input and the low-pass filtered SCIs with different parameters. (a)(e) Distorted SCIs as the input;
(b)(f) σ = 5.5; (c)(g) σ = 11; (d)(h) σ = 1.0.

kernel is defined to be

m(i, j) =

{
1
t (i · sinθ + j · cosθ) = 0; i2 + j2 ≤ t2

4

0 otherwise
,

(11)
where θ indicates the specific direction of motion and t denotes
the amount of motion in pixels. As such, only the pixels along
the motion direction are taken into account in the convolution
process. The parameter values are empirically set as t = 9 and
θ = 1.

Again, the uncertainty information from motion blur chan-
nel is given by

SM (X) = f(X,Xm) =
(G(X)− G(Xm))

2

G2(X) + G2(Xm)
. (12)

In Fig. 4, we provide the SCIs and corresponding SG and
SM maps. Two typical distorted SCIs are used for demonstra-
tion, which are Gaussian noised and Gaussian blurred versions
of the original SCI. One can discern that the uncertainty maps
SG and SM exhibit strong correlation with image distortion.

Consequently, the uncertainty information is computed by
averaging SG(X) and SM (X) [19],

S(X) =
SG(X) + SM (X)

2
. (13)

Again, the uncertainty information is passed into the CDF to
generate the significant and insignificant uncertainty, resulting
the corresponding significance map CS(X). Finally, the visual
primary information and uncertainty are combined together for
quality evaluation,

Q(X) = CG(X) ◦ CS(X), (14)

where “◦” denotes the Schur product [55] in terms of the
entrywise operation. It ensures a local combination to reflect
the quality over space.

The uncertainty information caused by the encountered
surprise when perceiving the real scene is highly relevant to
the “saliency” and “information content”. In particular, for
textual content, the high contrast edges that convey mean-
ingful information and meanwhile produce high perceptual
contrast are also obvious in the uncertainty map. Although
the captured uncertainty may not be as accurate as specifical-
ly designed saliency prediction algorithms in predicting the

saliency points, the concept of uncertainty lays a perceptually
meaningful groundwork for saliency modeling [56]. In this
manner, combining the maps of primary visual information
and uncertainty can also be interpreted as using the “saliency”
or “information content” to weight the primary visual infor-
mation.

In analogy to the feature extraction for the original image
X, identical operation can be applied to the distorted image Y
to obtain Q(Y). However, it is difficult to transmit the Q(X)
directly to the receiver side for comparison, which may impose
a high transmission burden in terms of the RR data rate.
Therefore, to achieve a good compromise between prediction
accuracy and the RR data rate, we establish the histogram that
represents the distribution of Q. Specifically, the range of Q
([rmin, rmax]) is divided into n equal sized intervals, and the
histogram bin corresponding to each interval is determined by
the number of elements in set χi,

hi = |χi|, χi = {x|Q(x) ∈ Ii}, (15)

where

Ii =

[
rmin +

(i− 1) · (rmax − rmin)

n
, rmin +

i · (rmax − rmin)

n

)
.

(16)
As such, the established histogram for image X is determined
by

HX(i) =
hi∑n
j=1 hj

. (17)

In words, each bin value belonging to the histogram represents
the corresponding probability of the interval. The established
histogram for image Y (HY(i)) is calculated in the same
manner, and the final score of the proposed RR-IQA algorithm
is computed by comparing the two histograms as follows,

D(X,Y) =
1

n

n∑
i=1

(
1− |HX(i)−HY(i)|

HX(i) +HY(i) + ε

)
, (18)

where ε is introduced to avoid the instability when HX(i) +
HY(i) is close to zero.

The diagram of the proposed method is shown in Fig. 6.
Identical feature extractions of the reference and distorted SCIs
are performed at the sender and the receiver sides, respec-
tively. To extract the features, firstly the GM map is created.
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Fig. 6. Diagram of the proposed SCI RR-IQA model.

Subsequently, the similarities between the input SCI and the
Gaussian/motion blurred versions are computed to generate
the uncertainty information. The significance maps of the GM
and uncertainty information are combined together, and the
histogram of the combined significance map is established to
facilitate the feature transmission. At the receiver side, the two
histograms are further compared to obtain the final quality
score.

IV. VALIDATIONS

A. Performance Evaluation on SIQAD

To validate the performance of the proposed algorithm,
the screen image quality assessment database (SIQAD) [18]
that is collected from SCIs including webpages, slides and
PDFs is employed. Specifically, SIQAD includes 980 distorted
images based on 20 references in total. Each reference image is
distorted with seven distortion types at seven distortion levels.
The distortion types include Gaussian noise, Gaussian blur,
motion blur, contrast change, JPEG compression, JPEG2000
compression and layer segmentation based coding.

We compare the proposed method with both FR and RR
IQA algorithms. The popular FR algorithms include SSIM
[7], PSNR, FSIM [8], VSI [11], GSIM [9], VIF [10] and
VSNR [57]. The specifically designed Screen content image
Perceptual Quality Assessment (SPQA) [18] is included in the
comparison as well. It is also worth noting that two versions
of SSIM implementations are compared, which are denoted to
be SSIM1 [58] and SSIM2 [59], respectively. The difference
between them lies in whether to employ the appropriate scale
to preprocess the reference and distorted SCIs. Practical RR-
IQA methods such as the WNISM [25], DNT-RR [26], VIF-
RR [29], FTB [32] and SDM [33] are compared as well.
As suggested in the paper [32], the fifth score of FTB is
employed (Q(4)

Phase), which approximately requires 1/4096
of the reference image information. In the literatures, these

algorithms can efficiently achieve high accuracy prediction
of natural image quality. Five evaluation metrics to assess
the performance of IQA measures are reported, including
Spearman rank correlation coefficient (SRCC), Pearson linear
correlation coefficient (PLCC), mean absolute error (MAE),
Root mean-squared error (RMSE), and Kendall’s rank corre-
lation coefficient (KRCC). A better objective IQA measure
should have higher PLCC, SRCC, and KRCC, while lower
MAE and RMS values.

A nonlinear mapping between objective and subjective
scores is performed to compute PLCC. In particular, assuming
the objective score to be r, the logistic regression function is
applied to obtain the mapped score, which is given by [60]

q(r) = β1

(
1

2
− 1

1 + eβ2(r−β3)

)
+ β4r + β5, (19)

where β1 to β5 are the model parameters obtained numerically
using a nonlinear regression process. Assuming the total
number of images is N , the mapped score for the i-th image
is qi and the corresponding subjective score is oi, the PLCC
is then computed to access the accuracy of the prediction,

PLCC =

∑
i(qi − q̄) · (oi − ō)√∑

i(qi − q̄)2 ·
∑
i(oi − ō)2

, (20)

where q̄ and ō represent the mean score of q and o over the
test set.

After converting the objective scores, MAE and RMSE are
calculated to measure the prediction accuracy, which are given
by,

MAE =
1

N

∑
|qi − oi|

RMSE =

√
1

N

∑
(qi − oi)2.

(21)

SRCC is employed to evaluate the prediction monotonicity.
Assuming the difference between the i-th image’s ranks in
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TABLE I
PERFORMANCE COMPARISONS WITH RR AND FR ALGORITHMS.

SIQAD PSNR SSIM1 SSIM2 VIF SPQA FSIM VSI GSIM VSNR DNT-RR VIF-RR WNISM FTB SDM Proposed
SRCC 0.5608 0.5836 0.7566 0.8069 0.8416 0.5819 0.5381 0.5483 0.5703 0.5054 0.6082 0.5188 0.4575 0.6020 0.7655
PLCC 0.5869 0.5912 0.7561 0.8206 0.8584 0.5902 0.5568 0.5686 0.5966 0.5291 0.5758 0.5857 0.4691 0.6034 0.8014
KRCC 0.4226 0.4235 0.5583 0.6082 0.6591 0.4250 0.3874 0.4054 0.4381 0.3615 0.4431 0.3540 0.3268 0.4322 0.5756
RMSE 11.590 11.545 9.3676 8.1795 7.3421 11.555 11.890 11.775 11.487 12.147 11.703 11.602 12.641 11.414 8.5620
MAE 9.0393 9.0934 7.3133 6.5261 5.7213 9.0116 9.2875 9.1663 8.8284 9.7913 9.5197 9.4566 10.132 9.0139 6.8021

TABLE II
STATISTICAL SIGNIFICANCE EVALUATION BASED ON PLCC.

IQA Model PSNR SSIM1 SSIM2 VIF SPQA FSIM VSI GSIM VSNR DNT-RR VIF-RR WNISM FTB SDM
α = 0.05 1 1 1 - 0 1 1 1 1 1 1 1 1 1
α = 0.01 1 1 - - 0 1 1 1 1 1 1 1 1 1

TABLE III
STATISTICAL SIGNIFICANCE EVALUATION BASED ON RMSE.

IQA Model PSNR SSIM1 SSIM2 VIF SPQA FSIM VSI GSIM VSNR DNT-RR VIF-RR WNISM FTB SDM
α = 0.05 1 1 1 - 0 1 1 1 1 1 1 1 1 1
α = 0.01 1 1 1 - 0 1 1 1 1 1 1 1 1 1

TABLE IV
DISTORTION TYPE BREAKDOWN FOR PLCC AND SRCC COMPARISONS.

Gaussian Noise Gaussian Blur Motion Blur Contrast Change JPEG JPEG2000 Layer Coding
PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

DNT-RR 0.8189 0.8211 0.8946 0.8875 0.7928 0.7903 0.7846 0.6719 0.4697 0.4328 0.6060 0.5849 0.5585 0.5555
VIF-RR 0.8657 0.8479 0.8830 0.8715 0.7350 0.7214 0.7570 0.6493 0.6912 0.6803 0.7647 0.7588 0.7321 0.7347
WNISM 0.8570 0.8442 0.8524 0.8370 0.6618 0.6606 0.7402 0.6142 0.2627 0.1742 0.3543 0.2810 0.2551 0.1880

FTB 0.7185 0.7165 0.7358 0.7400 0.5984 0.5866 0.5207 0.1112 0.5696 0.5474 0.5122 0.5155 0.5498 0.5213
SDM 0.8694 0.8635 0.7836 0.8199 0.5434 0.5307 0.7831 0.6617 0.7203 0.7331 0.6635 0.6292 0.7092 0.7496

Proposed 0.8798 0.8664 0.8810 0.8715 0.8465 0.8434 0.6812 0.5291 0.7638 0.7605 0.6807 0.6617 0.7110 0.7116

TABLE V
PERFORMANCE COMPARISONS WITH RR-IQA ALGORITHMS ON INDIVIDUAL CONTENT TYPES.

SCI DNT-RR VIF-RR WNISM FTB SDM Proposed

Webpage

SRCC 0.5353 0.6579 0.5556 0.4592 0.5301 0.8411
PLCC 0.5606 0.6186 0.6008 0.4647 0.5528 0.8619
KRCC 0.3888 0.4892 0.3846 0.3257 0.3838 0.6521
RMSE 11.6564 11.0605 11.2526 12.4642 11.7301 7.1387
MAE 9.4685 9.1471 9.0649 10.0879 9.2630 5.7670

Slides

SRCC 0.4703 0.5993 0.5772 0.4883 0.7042 0.7427
PLCC 0.5234 0.6488 0.6862 0.5396 0.7112 0.7997
KRCC 0.3365 0.4437 0.4045 0.3721 0.5082 0.5659
RMSE 12.2494 10.9388 10.4570 12.1029 10.1056 8.6315
MAE 9.9742 8.4214 8.6821 9.6359 7.8479 7.0576

PDF

SRCC 0.4645 0.5578 0.4950 0.4459 0.6291 0.7064
PLCC 0.4892 0.5673 0.5884 0.4695 0.6249 0.7514
KRCC 0.3289 0.3999 0.3343 0.3255 0.4499 0.5181
RMSE 12.3638 11.6737 11.4618 12.5161 11.0666 9.3532
MAE 9.9008 9.3657 9.4657 9.8397 8.8083 7.3986

subjective and objective evaluations is vi, it is defined as,

SRCC = 1−
6
∑N
i=1 v

2
i

N(N2 − 1)
. (22)

Moreover, the KRCC is given by

KRCC =
2(Nc −Nd)
N(N − 1)

, (23)

where Nc and Nd denote the number of concordant and
discordant pairs in the database, respectively.

Here all the 980 distorted images are included in the
evaluation. The test results are given in Table I. To reduce the
transmission overhead, the number of bins n is set to be 5,
indicating that only four feature values need to be transmitted,

as the sum of the probability in all of the bins equals to
unity. Specifically, we quantize each feature into 12 bits and in
total the additional overhead for each SCI is only 48 bits. As
such, the number of the overhead bits is among the lowest in
the RR-IQA methods. To our best knowledge, only the VIF-
RR method requires less transmission bits than our approach,
which costs 30 bits to transmit the features. From Table I it
can be seen that the proposed scheme clearly outperforms the
RR-IQA algorithms with state-of-the-art performance. Since
FR and RR-IQA algorithms are applied in different scenarios
and RR algorithms require much less information than the
FR methods, it is usually unfair to directly compare the RR
method with FR method. However, the FR-IQA algorithms
can still supply us useful references on the current status of
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the SCI IQA research. It is also interesting to find that the
proposed method outperforms most of the FR-IQA algorithms,
and is only inferior to VIF and SPQA. The performance
improvements originate from the design philosophy, in which
the characteristics of SCIs are taken into consideration.

B. Statistical Significance Analyses

Following the standardized procedures in [61], we carry out
the statistical significant analyses to obtain the significance of
the difference in terms of the PLCC and RMSE based on the
statistical hypothesis testing, respectively. The motivation of
conducting these evaluations is to know whether the confi-
dence in the estimation of the proposed algorithm’s perfor-
mance allows us to draw the statistically sound conclusion
of superiority or inferiority compared with the-state-of-the-art
methods.

The significance of the difference between the correlation
coefficients is obtained by performing the Fisher’s z trans-
formation to convert the PLCC into the normally distributed
variable [62]. The hypothesis testing is performed by hy-
pothesizing that there is no significant difference between the
proposed and one of the compared methods. Two significance
levels are applied, and the corresponding α values are set to
be 0.05 and 0.01, respectively. The results are demonstrated in
Table II, where a symbol “-” indicates that two IQA methods
are statistically indistinguishable with each other, “1” denotes
that the proposed IQA method is statistically better than the
corresponding one in the column, and “0” denotes that the
IQA method of the column is better than the proposed one.
It can be observed that the proposed method is statistically
superior to all RR-IQA algorithms, inferior to SPQA, and
indistinguishable with the VIF method when α = 0.05.
Moreover, when the α value is lowered down to 0.01 to
decrease the probability of type I error, the proposed method
is also statistically indistinguishable with SSIM2.

Subsequently, following the method described in [61], we
perform the statistical significance analyses on the difference
between RMSE. Specifically, the F-distribution is employed to
compare whether the two methods are statistically significantly
different. Again, we use the same notations as in PLCC
significance test, and the results are provided in Table III.
It can be observed that the proposed model is statistically
superior to the RR IQA algorithms. Compared with the FR-
IQA algorithms, for both α = 0.01 and α = 0.05, the
proposed method is statistically superior to most of the FR-
IQA methods, inferior to SPQA, and indistinguishable with
VIF.

C. Performance Comparison on Individual Distortion Types

In this subsection, the breakdown prediction performance
is examined for individual distortion types. The performance
is provided in Table IV. It can be observed that in most
of the cases, the proposed method is among the best from
the perspectives of prediction accuracy and monotonicity.
The scatter plots between human ratings and the objective
scores after nonlinear regression are demonstrated in Fig. 7.
Different colors are used for different distortion types. One

TABLE VI
PARAMETER SENSITIVITY TESTING WITH THE VARIATION OF σ.

σ 3.5 4.5 5.5 6.5 7.5
SRCC 0.7617 0.7649 0.7655 0.7653 0.7651
PLCC 0.7972 0.8008 0.8014 0.8013 0.8014
KRCC 0.5705 0.5746 0.5756 0.5750 0.5749
RMSE 8.6421 8.5729 8.5620 8.5635 8.5621
MAE 6.9130 6.8299 6.8021 6.8235 6.8004

TABLE VII
PARAMETER SENSITIVITY TESTING WITH THE VARIATION OF t.

t 7 8 9 10 11
SRCC 0.7531 0.7567 0.7655 0.7658 0.7625
PLCC 0.7874 0.7943 0.8014 0.8041 0.8015
KRCC 0.5612 0.5664 0.5756 0.5770 0.5721
RMSE 8.8246 8.6958 8.5620 8.5089 8.5600
MAE 7.0773 6.9795 6.8021 6.7546 6.8236

can discern that the proposed method has stronger ability
in cross-distortion1 quality prediction, which further verifies
the robustness and efficiency of the algorithm. Moreover,
the scatter plots for the compressed SCIs (JPEG, JPEG2000
and layer segmentation based coding) are shown in Fig. 8,
which suggest that the proposed algorithm is capable of
delivering trusted quality prediction scores on the evaluation
of compression artifacts.

D. Performance Comparison on Individual Content Types

In SIQAD, the 20 source SCIs can be further divided
into three types from the perspective of application scenario:
Webpage, Slides and PDF files (digital magazines). The SCIs
belonging to each content type are shown in Fig. 9. Moreover,
the IQA performance is further examined by comparing the
proposed method with state-of-the-art RR-IQA algorithms.
The results are illustrated in Table V, and we can see that
the proposed algorithm can achieve the best quality prediction
performance for all of the three content types.

E. Parameter Sensitivity Evaluation

Generally speaking, a trusted quality measure should be
able to tolerate small parameter value changes. Therefore,
we conduct an experiment to investigate the impact of the
parameters used in Gaussian and motion blur on the quality
prediction performance. Firstly, the standard deviation in the
Gaussian smooth kernel σ is examined by varying it from

1“Cross-distortion quality prediction” indicates that the IQA measure is
able to achieve good prediction performance when different distortion types
are involved. It requires the IQA model to be general and flexible to handle
broader types of distortions.

TABLE VIII
PARAMETER SENSITIVITY TESTING WITH THE VARIATION OF θ.

θ -3 -1 1 3 5
SRCC 0.7666 0.7629 0.7655 0.7665 0.7667
PLCC 0.8023 0.7993 0.8014 0.8028 0.8025
KRCC 0.5759 0.5718 0.5756 0.5765 0.5766
RMSE 8.5452 8.6026 8.5620 8.5350 8.5408
MAE 6.8349 6.8813 6.8021 6.8295 6.8198
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Scatter plots of the DMOS vs objective RR-IQA scores (after nonlinear regression) for all SCIs.

(a) (b) (c)

(d) (e) (f)

Fig. 8. Scatter plots of the DMOS vs objective RR-IQA scores (after nonlinear regression) for compressed SCIs (including JPEG, JPEG2000 and layer
segmentation based coding).
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Fig. 9. SCIs belonging to different content types. Red rectangular: Webpage; Green rectangular: PDF; Blue rectangular: Slides.

3.5 to 7.5, and the results are tabulated in Table VI. We can
observe that the performance of our IQA measure is barely
affected. Subsequently, the parameters used in the motion blur
are examined by changing t from 7 to 11 and θ from -3 to
5. From Tables VII & VIII, it can be seen that the proposed
method is able to achieve considerably stable performance.
These results further provide useful evidence that the proposed
method is robust and tolerant to the varying parameter values
used in Gaussian and motion blur.

F. Performance Evaluation on Transmission Loss

Furthermore, we evaluate the performance of the proposed
method using the distorted SCIs degraded by the transmission
loss. Specifically, two datasets are built together with the
subjective testing results. Distortion types in the two datasets
are JPEG and H.264/AVC transmission errors, respectively.
The 20 reference SCIs in SIQAD are employed. To create the
distorted versions of these SCIs, each SCI is firstly compressed
by the two codecs, JPEG and H.264/AVC, and then the coding
blocks are randomly discarded. The mean pixel values from
surrounding blocks are used to infer the discarded block. To be
consistent with the compression process, the discarded block
sizes are 8x8 and 16x16 for JPEG and H.264/AVC, respec-
tively. Four distortion levels depending on the probability of
the transmission loss are included, from 10% to 40% with an
interval of 10%. In total, 80 distorted SCIs are generated from
the 20 reference SCIs for each dataset. Twenty human subjects
were invited to participate. In particular, they were asked to
view the distorted SCIs with a viewing distance around 2-2.5
screen heights, and 10-category discrete scale was employed
to record the subjective opinions. This process is in consistent
with that in developing the SIQAD database. After collecting
the raw scores, the average values are calculated to generate
the final MOS for each distorted SCI.

The experimental results comparing with the state-of-the-art
algorithms are tabulated in Tables IX & X, from which we can
observe that the proposed algorithm achieves superior perfor-
mance in terms of both prediction accuracy and monotonicity.
These results further demonstrate strong quality prediction
capability of the proposed method for SCI distortions.

G. Complexity Comparison

Table XI tabulates the execution time of different IQA
methods. In particular, these IQA methods are run on the
SIQAD database. The testing environments are Intel I7-4790
CPU@3.60GHz, 8GB random access memory and MATLAB
R2014 platform. The average running time is recorded. For

TABLE IX
PERFORMANCE COMPARISONS WITH STATE-OF-THE-ART RR-IQA

ALGORITHMS FOR JPEG TRANSMISSION LOSS.

RRDNT VIR-RR WNISM FTB SDM Proposed
SRCC 0.8550 0.9016 0.6693 0.6343 0.8496 0.9171
PLCC 0.8687 0.9328 0.6737 0.6489 0.8503 0.9343
KRCC 0.6561 0.7069 0.4978 0.4533 0.6529 0.7565
RMSE 0.8153 0.5931 1.2166 1.2526 0.8664 0.5870
MAE 0.6580 0.4824 0.9413 1.0442 0.6922 0.4300

TABLE X
PERFORMANCE COMPARISONS WITH STATE-OF-THE-ART RR-IQA

ALGORITHMS FOR H.264/AVC TRANSMISSION LOSS.

RRDNT VIR-RR WNISM FTB SDM Proposed
SRCC 0.8670 0.9114 0.4640 0.5756 0.8802 0.9488
PLCC 0.8934 0.9545 0.4913 0.6355 0.8541 0.9608
KRCC 0.6535 0.7077 0.3083 0.4089 0.7000 0.8070
RMSE 0.6765 0.4493 1.3118 1.1628 0.7832 0.4176
MAE 0.5188 0.3583 1.0954 0.9126 0.6532 0.3135

the RR-IQA methods, the computation of feature extraction
at both the sender and receiver sides, as well as the feature
comparison operations are included. One can discern that that
the computational complexity of the proposed model is among
the lowest in the compared IQA methods. Moreover, compared
with the other RR-IQA algorithms, our method significantly
saves the computational time, which enables its applications
in real scenarios.

H. Comparisons of the RR Data Rate to the SCI Data Rate

We have conducted an experiment to compare the data rate
of transmitting the features to that of transmitting the SCI.
As explained in Section IV-A, the RR data rate (RRR) used
to transmitted the features is 48 bits per picture. Assuming
the coding bits of each SCI is RSCI , then the percentage of
the data rate used in transmitting the feature information is
computed by,

PRR =
RRR

RSCI +RRR
. (24)

In practice, we use the HEVC SCC extension codec (HM-
15.0+RExt-8.0+SCM-2.0rc1) to compress each reference S-
CI in SIQAD database (CIM1∼CIM20) at three QP points
(QP=20, 30, 40), ranging from high bit rate to low bit rate
coding. Advanced coding tools that have been specifically
developed for SCI compression are enabled, such as intra
block copy and Palette mode [63]. The results are shown in
Table XII, from which we can observe that the PRR is 0.02%
on average. As such, the RR data rate can be regarded as
negligible in the transmission of SCI stream.
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TABLE XI
RUNNING TIME OF DIFFERENT IQA METHODS.

IQA Model PSNR SSIM FSIM VSI GSIM VSNR DNT-RR VIF-RR WNISM FTB SDM Proposed
Time (s) 0.002 0.016 0.279 0.156 0.020 0.240 4.314 12.731 1.867 0.531 0.391 0.197

TABLE XII
PERCENTAGE OF THE BIT RATE PRR USED IN TRANSMITTING THE FEATURE INFORMATION FOR EACH SCI IN SIQAD.

CIM1 CIM2 CIM3 CIM4
QP=20 QP=30 QP=40 QP=20 QP=30 QP=40 QP=20 QP=30 QP=40 QP=20 QP=30 QP=40
0.008% 0.016% 0.036% 0.008% 0.013% 0.026% 0.008% 0.013% 0.031% 0.008% 0.014% 0.029%

CIM5 CIM6 CIM7 CIM8
QP=20 QP=30 QP=40 QP=20 QP=30 QP=40 QP=20 QP=30 QP=40 QP=20 QP=30 QP=40
0.009% 0.015% 0.029% 0.006% 0.011% 0.027% 0.012% 0.021% 0.037% 0.010% 0.021% 0.050%

CIM9 CIM10 CIM11 CIM12
QP=20 QP=30 QP=40 QP=20 QP=30 QP=40 QP=20 QP=30 QP=40 QP=20 QP=30 QP=40
0.006% 0.012% 0.032% 0.008% 0.014% 0.031% 0.006% 0.013% 0.031% 0.005% 0.009% 0.021%

CIM13 CIM14 CIM15 CIM16
QP=20 QP=30 QP=40 QP=20 QP=30 QP=40 QP=20 QP=30 QP=40 QP=20 QP=30 QP=40
0.009% 0.017% 0.037% 0.007% 0.013% 0.035% 0.007% 0.012% 0.024% 0.006% 0.012% 0.030%

CIM17 CIM18 CIM19 CIM20
QP=20 QP=30 QP=40 QP=20 QP=30 QP=40 QP=20 QP=30 QP=40 QP=20 QP=30 QP=40
0.011% 0.022% 0.050% 0.006% 0.012% 0.025% 0.006% 0.012% 0.029% 0.008% 0.016% 0.036%

I. Discussions

Practically, deploying the SCI RR quality assessment
method in the interactive screen-remoting system requires the
algorithm to be both effective and efficient, especially in the
trend of increasing proliferation of high-volume screen visu-
alization data for the purpose of real-time quality monitoring
and high-fidelity display maintaining. Though it is difficult
to simultaneously achieve both of them, we can observe that
our model is able to achieve a good compromise from the
validations. Specifically, the proposed method outperforms the
state-of-the-art methods for the overall database and most of
the individual distortion types, while the transmission overhead
is only 48bits/pic and the computational complexity is among
the lowest.

As one of the first attempts on this topic, the proposed
method also has several limitations that should be improved
in the future. Firstly, the current method is applicable to
the screen content image. In practice, how to extend it to
screen content video should be further investigated. In par-
ticular, the high correlation among screen video frames may
further reduce the transmission and computational overhead
of the extracted features by exploiting the inter-prediction
like techniques for feature prediction. Secondly, it is worth
mentioning that the design of RR method does not make
any assumption on the image distortion types, making it
have the potential to be used for general-purpose applications.
However, currently the testing is based on eight distortion
types. In the future, more distortion types will be involved for
verification as well. Moreover, statistical features that exhibit
more robust cross distortion type prediction will be studied in
the future. Thirdly, the methodology of selecting the model
parameters from the functionalities of HVS is worth further
exploring. Though the investigation of viewing behaviors for
the particular screen content is still at the starting stage, the
fundamentally interesting differences between SCIs and natu-
ral images from the perspective of psychological studies may

bring more inspirations to the model parameter selection in
the future. Finally, how to design screen content enhancement
algorithm using the statistical features from the proposed RR-
IQA algorithm is a topic worth further investigating. This
poses new challenges to IQA and restoration research for SCIs
and opens up new space for future exploration.

V. CONCLUSION

We have specifically developed a RR-IQA model that au-
tomatically predicts the quality of SCIs. Statistical features
obtained from the primary visual information and the amount
of uncertainty are combined in an efficient way to reflect the
perceived quality. The RR data rate (48 bits/pic) is negligible
compared to the compressed SCI bit-stream, and the compu-
tational complexity is among the lowest in the state-of-the-art
IQA algorithms. Experimental results show that the proposed
method is well correlated with subjective evaluations of SCI
quality, suggesting that it is promising at handling computer
generated unnatural images.
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